

MATHEMATICS METHODS: UNITS 3 & 4, 2022

Test 1 - (10%)

3.1.7, 3.1.8, 3.1.10 to 3.1.16, 3.2.1 to 3.2.3, 3.2.6, 3.2.7

Time Allowed 20 minutes **First Name**

Surname **MARKING GUIDE**

20 marks

Circle your Teacher's Name:

Mrs Alvaro

Mrs Bestall

Mrs Fraser-Jones

Mr Gibbon

Mrs Greenaway

Mr Koulianos

Mr Luzuk

Mrs Murray

Mr Tanday

Assessment Conditions: (N.B. Sufficient working out must be shown to gain full marks)

Calculators:

Not Allowed

Formula Sheet:

Provided

Notes:

Not Allowed

PART A - CALCULATOR FREE

QUESTION 1 (6 marks)

a) Differentiate $y = \frac{5x+2}{r_0\sqrt{r}}$ (do not simplify beyond positive indices). (2 marks)

$$y = \frac{5x+2}{x^{\frac{3}{2}}}$$
$$y' = \frac{5x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}}(5x+2)}{x^3}$$

$$y = \frac{5x+2}{x^{\frac{3}{2}}}$$

$$y = (5x+2)x^{-\frac{3}{2}}$$

$$y = (5x+2)x^{-\frac{3$$

✓ Attempts use of product or

OR

$$y = 5x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$$

$$y' = -\frac{5}{2x^{\frac{3}{2}}} - \frac{3}{x^{\frac{5}{2}}}$$

✓ Splits numerator

✓ Correct derivative with positive indices

b) Let
$$g(x) = (2-x^3)^3$$
.

i) Evaluate g''(1).

(3 marks)

$$g'(x) = 3(2-x^{3})^{2}(-3x^{2})$$

$$= -9x^{2}(2-x^{3})^{2}$$

$$g''(x) = -18x(2-x^{3})^{2} + 2(2-x^{3})(-3x^{2})(-9x^{2})$$

$$= -18x(2-x^{3})^{2} + 54x^{4}(2-x^{3})$$

$$g''(1) = 36$$

✓ First derivative

✓ Second derivative

✓ Correct value

ii) What does your result in part (i) represent?

(1 mark)

The rate of change of the first derivative when x = 1.

✓ Exact wording

QUESTION 2 (4 marks)

The radius of a sphere increases from 10cm to 10.1cm. Find the approximate change in surface area that this causes.

$$S = 4\pi r^2$$

$$\frac{dS}{dr} \approx 8\pi r$$

$$r = 10$$

$$\delta r = 0.1$$

$$\delta S \approx \frac{dS}{dr} \delta r$$

$$\approx 8\pi r \times \frac{1}{10}$$
$$\approx 8\pi$$

✓ Derivative

✓ Values of r and δr

There is an increase of approximately 8π cm².

✓ States change

✓ Substitutes into increments formula

QUESTION 3

(5 marks)

a) Find
$$\int (5\sqrt{x} + 1) dx$$

(2 marks)

$$\int 5x^{\frac{1}{2}} + 1.dx = 5 \times \frac{2}{3} + x + c$$
$$= \frac{10x^{\frac{3}{2}}}{3} + x + c$$

✓ Correct integral

✓ Fractional indices

NB: Deduct 1 mark over the question if missing +c

b) Find
$$\int \left(\frac{t^4 - 2t^3 + 1}{2t^2} \right) dt$$

(2 marks)

$$\int \frac{t^4}{2t^2} - \frac{2t^3}{2t^2} + \frac{1}{2t^2} dt = \int \frac{t^2}{2} - t + \frac{t^{-2}}{2} dt$$

$$= \frac{t^3}{6} - \frac{t^2}{2} - \frac{t^{-1}}{2} + c$$

$$= \frac{t^3}{6} - \frac{t^2}{2} - \frac{1}{2t} + c$$

✓ Splits numerator

✓ Correct integral (positive indices)

c) Find
$$\int (6(x^4 + 2x^3)^5 (4x^3 + 6x^2)) dx$$

(1 mark)

 $(x^4 + 2x^3)^6 + c$

✓ Correct integral

QUESTION 4 (5 marks)

Consider the function f(x), defined for $x \ge 0$. The graph of y = f(x) is shown below. Point B is a local maximum with x-coordinate b, point D is an inflection point with x-coordinate d, and point F is a local minimum with x-coordinate f.

a) Identify the point(s) (i.e. A, B, C, D, E, F or G) with the following properties:

i)
$$f'(x) < 0$$
 and $f''(x > 0)$. (1 mark)

E

ii)
$$f'(x) < 0$$
 and $f''(x < 0)$. (1 mark)

b) On the axes below sketch the graph of f'(x). (3 marks)

